Четырёхугольник AMTP вписан в окружность. Расстояние между точками М и Р равно 10, РТ=24, МТ=26.
а) Найдите косинус угла МАР.
б) Найдите АМ, если синус угла МРА равен
а) Найдите косинус угла МАР.
б) Найдите АМ, если синус угла МРА равен
Ответ
5/5
(1 оценка)
1
Мозг
Отвечающий
Для сторон треугольника MPT выполняется теорема Пифагора
26^2 = 10^2 + 24^2
следовательно, ∠MPT=90, MT - диаметр.
То же самое по теореме косинусов:
cosMPT =(MP^2 +PT^2 -MT^2)/2MP*PT =(10^2 +24^2 -26^2)/2MP*PT =0 =>
∠MPT=90
a) ∠MAP=∠MTP (вписанные, опирающиеся на одну дугу) =>
cosMAP =cosMTP =PT/MT =12/13
б) теорема синусов для △MPA
2R =MT
AM/sinMPA =2R => AM =26*6/13 =12