Решить задачу по геометрии. Правильная пирамида. С чертежом желательно.
В правильной треугольной пирамиде SABC сторона основания равна a, боковое ребро равно а. Через среднюю линию основания ABC, параллельную BC, и середину бокового ребра SA проведена плоскость. Найти площадь сечения.
Ответ проверен экспертом
0.5/5 (8 оценок)
15
Hrisula 9 лет назад
Светило науки - 7292 ответа - 165986 раз оказано помощи
Пирамида называется правильной,
если её основание - правильный n-угольник, а все боковые рёбра равны.
Т.е. боковые грани - равнобедренные треугольники. 
По условию стороны основания и боковые ребра равны а, следовательно, боковые грани - не просто равнобедренные, но и правильные треугольники.
Средняя линия треугольника равна половине стороны, которой она параллельна.
Сечение - треугольник. Его боковые стороны также средние линии боковых граней. Следовательно, это  сечение  - равносторонний  треугольник Сечение и грани пирамиды - подобные треугольники с коэффициентом подобия 1/2.
Площадь правильного треугольника находят по формуле
S=(а²√3):4.
Отношение площадей подобных фигур равно квадрату коэффициента подобия. 
Площадь сечения пирамиды относится к площади грани как k²=(1/2)²=1/4
Sсеч. =S АВС:4
Sсеч. =(а²√3):16